
Analysis of 24 Hours Internet Attacks 
A Brief Overview of Malicious Traffic Targeting Featureless Servers on the Web 

 
Tim Britton , Ian Liu-Johnston , Ian Cugnière , Swati Gupta , Danton Rodriguez , 1  1  1  1  1   

Julien Barbier , Sebastien Tricaud 1  2  

Holberton School 1  

Honeynet Project  2  

 
Abstract: 

For the past decades, bots and botnets       
have been on the front page of newspapers and         
are one of the main topics of discussion in the          
news media. The range of the attacks and their         
targets have been increasing.1 A recent      
example, the Mirai network - a botnet built        
through insecure Internet of Things (IoT)      
devices -, has been at the center of attention         
after it provoked an internet outage primarily       
on the East Coast.2 A study also found that “80          
percent of spam was sent by botnets by 2009”.3         
Despite this, most of our everyday life relies        
heavily on the internet and is still vulnerable to         
malicious attacks. This paper aims to explore       
where such attacks originate and how the       
attacks occur. We set up and decided to        
observe what happens to an internet-facing      
server that should not encounter anything but       
local network activity. To investigate further,      
we set up honeypots on that server to see how          
the flow of traffic changed, and what bots and         
other clients would do. We wish to share our         
findings and thus humbly contribute to more       
awareness about the risks faced by anyone       
using the internet. 
 

1. Introduction & Methodology  

In order to observe malicious activity      
on the internet we set clear steps to decide         
which methodology to adopt based on the       
traffic we would receive. 

We first set up a bare Amazon AWS        
instance whose data center resides in      
Ashburn, Virginia. To get a general overview       
of the traffic that would come to the server,         
we did not run any services that would be         
useful to anybody else, and did not connect        
the Internet Protocol (IP) address to any       
domain name. Very shortly after renting the       
server, we set up a packet capture for a         
24-hour period with tshark/wireshark. We     
did this to identify the most promising       
traffic/protocols to observe and concentrate     
our efforts on. We then analyzed the packet        
capture file with tools such as      
tshark/wireshark, Computer Incident   
Response Center’s (CIRCL) Border Gateway     
Protocol (BGP) ranking API, and p0f. 
 
1.1 BGP Rankings 

CIRCL’s BGP Ranking provides data to      
calculate the security ranking of Internet      
Service Providers (ISPs).4 We compared the      
list of IP addresses that accessed our server        
during the initial 24-hour period to calculate       
the risk assessment for these IP addresses.5       
The closer the BGP ranking is to zero, the         
more malicious the IP address is. At the time,         
the most malicious IP in our logs scored 0 out          
of 13,043. This IP address accessed the TCP        
port 3380, which is used by the SNS Channels.         
Other notable ports and protocols that were       
accessed by high risk IP addresses were       
various ephemeral ports such as the Intel       

 



Remote Desktop Management Interface    
(IRDMI) protocol, the port 8089, and the port        
81 (TorPark Onion routing). See Table 1.0 for        
the list of the most malicious IP addresses we         
captured (as of February 13rd, 2017): 

 
 

We realized that some protocols were      
attracting remarkably more traffic than     
others. For example, for application layer      
protocols, we recorded 255,796 connection     
attempts through Secure Shell (SSH), while      
we received only 1 connection to the       
Connection-less Lightweight Directory Access    
Protocol (CLDAP), cf. table 1.1 in Annex. 
 
1.2 Protocol Selection 

While the scope of this paper might       
seem enormous, if not quixotic, after parsing       
the data, we decided to focus our efforts on         
the following protocols: the Hypertext     
Transfer Protocol (HTTP), the Session     
Initiation Protocol (SIP), SSH, and the      
Telecommunications Network (Telnet)   
protocol. These protocols were selected for      
the following reasons:  

● The HTTP protocol is the most widely       
used protocol on the internet, and      
thus provides the biggest resource for      
exploits; 

● The SIP protocol is often used for       
enterprise-level telecommunication  
systems; 

● The SSH protocol represents many     
bruteforce attempts and accounts for     
more than half of the total traffic from        
our initial packet capture; 

● The Telnet protocol: The Mirai botnet      
and its successor Hajime exploit this      
protocol, as IoT devices - which often       
use Telnet - comprise the majority of       
targeted systems. 

We thus used honeypots to attract the traffic        
that targets the protocols above and analyzed       
the data they produced.6 Honeypots are      
pieces of software designed to reproduce the       
same functionality as vulnerable servers, and      
can act as decoys to attract intruders. 

In this paper, we will first detail the        
traffic observed per protocol. Then, we will       
expand on the botnets’ patterns that we were        
able to notice. It will allow us to better grasp          
how these botnets infect and interact with a        
targeted system. 
 
2. Protocols of interest 
 
2.1 HTTP 

“The Hypertext Transfer Protocol (HTTP)     
is an application-level protocol for distributed,      
collaborative, hypermedia information systems. It is      
a generic, stateless, protocol which can be used for         
many tasks beyond its use for hypertext, such as         
name servers and distributed object management      
systems, through extension of its request methods,       
error codes and headers.” 7 

Because HTTP is one of the most       
widely used protocols on the internet, it is        
also one of the main vectors for exploitation.        
We recorded 245 HTTP packets during our       
initial 24-hour packet capture. 

To investigate this protocol further,     
we setup a web-application honeypot,     
Glastopf, running in a Docker container. This       

 



honeypot provided basic functionality to     
record GET or PUT requests, IP addresses,       
Uniform Resource Identifiers (URIs), and     
timestamps. It was also designed to simulate       
SQL vulnerabilities and record injection     
attempts. We launched this honeypot     
alongside another packet capture for a second       
24-hour period on March 7th, 2017.  

The resulting logs from Glastopf did      
not yield much data, possibly because of       
specialized functionality, and possibly    
because Glastopf is an older honeypot. In total        
only 14 connections were made, two of which        
were requests for meta-release-lts, and     
/phpmyadmin/scripts/setup.php, while  
the rest were for the website root. 

To give us a broader picture of        
possible connections, we decided to run      
Glastopf for a much longer period of time. In         
addition, we wrote a basic honeypot in       
NodeJS to run simultaneously and compare      
the traffic from both servers.8 The custom       
honeypot served a static authentication page      
and had logging capabilities. We ran both web        
servers on port 80 for a 12-day period. 

By doing so, we were able to       
cross-reference the data obtained from those      
sources, which gave us a more refined       
understanding of the kind of attacks currently       

targeting the HTTP protocol (cf. Table 2.0       
and Table 2.1). 
 

 



In our observations of the Glastopf      
logs, the majority of client requests were for        
PHPMyadmin and vulnerable Wordpress    
plugins. There were various other requests to       
interesting URIs such as /system.ini,     
/struts2-showcase/, and  

/current-config/passwd. Regardless of   

where the requests originated from, be it       
Bangalore, Austria or the United States, the       
attacks were fairly homogenous between our      
honeypots and relied on well-known attack      
vectors. 

The most interesting log entries for      
the NodeJS honeypot provided links to      
trojans and other binaries. They were sent to        
our servers in various HTTP headers, with the        
ability to install and execute malware through       
known exploits. 

One type of malicious request     
attempted to leverage an exploit known as       
“Shell Shock” or “Bashdoor”,9 which was      
made public in 2014. It exploited a       
vulnerability in web servers that uses Bash to        
process the User-Agent header for certain      
requests. The User-Agent string would be      
sent as a malformed function definition with       
bash commands immediately following the     
function definition. Such a string could adopt       
the following format: 
( ) { :;}; /bin/bash -c ‘echo        

vulnerable’ 

The Shellshock exploit in our logs      
attempted to download a shell script, a Perl        
script, and a tar archive renamed to have a         
.jpg extension. The tar archive compressed all       
other files. The shell script created a crontab        
that would re-download the trojan and verify       
that the service was running. All Bash scripts        
ensured persistence for the Perl script      
named “DDoS Perl IrcBot v1.0 / 2012 by        
DDoS Security Team”. We also encountered a       
modified version of the Perlbot that also       

leveraged the Shellshock vulnerability in     
other logs. 

Another series of notable exploit     
attempts leveraged a recent vulnerability in      
the Apache Struts web framework.10 

This exploit was revealed March 7th,      
2017. The initial log entries were dated       
shortly after the exploit was publicly      
released. There were multiple exploit     
attempts that used the same methodology as       
in the exploit-db python script.11 The exploit       
works by leveraging a vulnerability in parsing       
the Content Type header field, which allows       
remote code execution.12 

Subsequent attempts were   
enumeration techniques from Metasploit    
modules,13 that followed this convention:  
%{#context['com.opensymphony.xwork2.

dispatcher.HttpServletResponse'].add

Header('tkplpyg','tkplpyg')}.multipa

rt/form-data 
The first few malicious clients     

downloaded a malicious script for Linux and       
a binary named “UnInstall.exe” for Windows.      
This binary was also found during the same        
time period in a pirated torrent of Skyrim.  

The Linux script stopped all firewalls,      
set the DNS server to 8.8.8.8, removed any        
instances of Apache from /etc/init.d/ and      
instances of the malicious binary. Then it       
downloaded a series of dynamic libraries as       
well as the malicious binary masquerading as       
an Apache process. 

The binary itself was a bitcoin miner       
based off of cpuminer2.3.3, that mined into       
the Stratum mining pool.14 It used the hash        
algorithm cryptonight, with the username     
“sqwukiomcage.” This illustrates the recent     
trend of increasing attacks aimed at      
cryptocurrencies. 

Next, it set a crontab to download and        
execute the script again, and checked through       
“known_hosts” in all “.ssh” directories, and in       

 



all “.bash_history” files to find any servers       
that were connected through ssh. Finally it       
downloaded the trojan onto those new      
servers. 
 
2.2 Telnet - esp. IoT Honeypot 

“The purpose of the TELNET Protocol is to        
provide a fairly general, bi-directional, eight-bit      
byte oriented communications facility. Its primary      
goal is to allow a standard method of interfacing         
terminal devices and terminal-oriented processes to      
each other. It is envisioned that the protocol may         
also be used for terminal-terminal communication      
("linking") and process-process communication    
(distributed computation).” 15 

Telnet is an unsafe protocol as all       
information (including authentication) is    
exchanged over plain text. Nonetheless, it is       
still used for IP cameras, routers and other        
IoT devices to allow remote system      
administration, such as firmware upgrades. It      
is used instead of SSH on these devices        
because it is easy to implement and       
lightweight, making it acceptable for devices      
without a lot of resources. 

Telnet was the second port to attract       
the most traffic, with 606 interactions      
detected during the 24-hour capture. We      
decided to study Telnet because of the       
aforementioned trend regarding botnets,    
such as Mirai, targeting IoT devices. Our       
intention was to study how those trends -        
noted by many experts - translate in near        
real-time observation. We thus decided to      
investigate further.  

In order to do so, we installed H-M-S        
Telnet honeypot16 in order to become the       
target of a more consequent flux of       
attacks/interactions. This honeypot has no     
specific content but does mimic a GoAhead       
wifi camera based on an exploit uncovered by        
Pierre Kim.17  

Focusing on IoT devices paid off as       
the traffic captured demonstrates. On March      

31st, we saw 1,075 connections, with a total        
of 306 unique IP addresses, connect to the        
Telnet honeypot server. 835 of those 1,075       
connections resulted in the connecting party      
successfully logging in (providing any two      
lines of input for a username and password),        
with 267 unique IPs logging in. Of the 835         
logins, 750 were generated by bots that       
successfully connected and created enough     
traffic to fit into an identifiable pattern. We        
observed patterns left by the following      
variants of Mirai: Mirai scanner, Mirai/Ecchi      
downloader, OBJPRN Mirai variant, Hajime     
downloader, and the Mirai 'xkajdnabw'     
variant. Around November 2016, the Mirai      
source code was released to the general       
public. Mirai’s original source code continues      
to be modified and new variants spread and        
keep infecting vulnerable devices. The     
variants mentioned previously echo concerns     
about Mirai being an easily replicable and       
highly adaptable botnet.18  

The countries of origin from our      
analysis directly correlated to some of those       
that were observed by experts in the field of         
cybersecurity: Taiwan, Russia, South Korea,     
Turkey, China, the United States, Brazil, and       
Iran (see Map 2.0).19 

 

 



2.3 SIP 
SIP is based on an HTTP-like      

request/response transaction model and is used to       
establish, modify, and terminate multimedia     
sessions such as audio or video calls, Internet        

telephony call.20  
The SIP protocol caught our attention      

for several reasons. Not only did it account for         
a significant portion of the traffic we received,        
but most of its applications are in enterprise        
telecommunication systems. 

However, SIP ended up being a       
disappointing lead as the only packets we       
observed were generated by SIPVicious. 

As noted by Cisco: 
“The tool could also be used to scan the IP or VoIP             

telephony network. Due to a flaw in the processing         
of SIP messages by the telephony device firmware,        
an attacker could use any number or any SIP         
address in the INVITE message to scan random        
networks to determine availability of live hosts. The        
attacker could initiate an INVITE session and       
determine a successful detection by receiving a       
phone ring as a response. This detection could allow         
the attacker to conduct further attacks such as host         
spoofing to make phone calls using the detected IP         
phone identity.”21 

It can also be used in a non-malicious        
way to audit a network.22 

All the packets were transferred over      
UDP, using the second version of the SIP        
protocol. The headers of the SIP packets show        
connection attempts. The To and From      
Header fields indicate that after the initial       
INVITE request, attackers tried random     
strings in the Contact header field to directly        
connect with a user at another end. 

Let us note that the results of this        
traffic may be attributed to a recent release of         
SIPVicious. The latest release of SIP vicious       
occurred on February 4th. We ran our initial        
packet capture concurrently on February 4th      
- 5th.  
 

2.4 SSH 
“The Secure Shell (SSH) is a protocol for secure          

remote login and other secure network services       
over an insecure network.” 23 

Although statistically we got an     
enormous volume of SSH connection     
attempts, we decided not to investigate the       
protocol as thoroughly as HTTP or Telnet       
because the traffic is mostly comprised of       
brute force attempts.  

While the number of connection     
attempts was significant, the vast majority of       
the attempts came from three IP addresses       
whose geolocation data corresponded to the      
Guangdong and Jiangsu areas in China. To be        
precise, 130,598 of the 140,606 SSH      
connection attempts we analyzed, came from      
just three IP addresses. In fact, over 99.8% or         
140,417 of the SSH connection attempts      
appeared to have originated from China. The       
highest number of connection attempts from      
an IP address whose geolocation data was       
outside of China was 49. 

A general trend we noticed by      
analyzing the auth logs from the 24-hour       
capture on the AWS server was IP addresses        
trying to connect via SSH as root on all ports          
from 1-65535, which may explain the high       
volume of traffic from individual IP      
addresses. When we analyzed the auth logs       
from the DigitalOcean server, we noticed that       
there were a number of bruteforce attempts       
against a range of user names, but not against         
a range of ports, contrary to the AWS        
instance. 
 
3. Botnets detected 

After having briefly mentioned the Botnets       
encountered, we will expand on that subject       
as it is one of the most notable and worrying          
trends in today’s security landscape. 
 
 

 



3.1 Hajime 
According to Rapidity Network,    

Hajime was first spotted around October 5th,       
2016.24 The traffic generated is similar to       
Mirai’s; after sequentially using a list of       
randomly generated passwords, Hajime    
attempts to open a new shell, and uses the         
/bin/busybox trick seen with Mirai (with      
ECCHI normally) to verify whether it is inside        
an actual shell. Then, it checks /proc/mounts,       
and attempts to go to a seemingly random        
directory and to run a set of commands to         
ensure that it can actually write to the        
directories listed. Hajime also checks to see if        
it has access to netcat or wget, and finally,         
runs the Data Duplicator (DD) command      
against /bin/echo to grab the first 52 bytes        
and analyze the Executable and Linkable      
Format (ELF) header, to get architecture      
information for the current machine. 

Finally, Hajime will download a script      
for the appropriate architecture with wget (if       
accessible and if the control server has that        
resource). 
 
2017-03-31 05:22:16,698 - RECEIVED    

INPUT 202.174.185.162 : ['rm .s;     

wget http://73.9.22.205:49511/.i;  

chmod +x .i; ./.i; exit'] 

2017-03-31 05:22:17,498 - RECEIVED    

INPUT 202.174.185.162 : ['q'] 

2017-03-31 05:22:17,504 - Lost    

connection to 202.174.185.162:39189 
 

Other researchers have noted that it      
will attempt to echo-assemble a binary if       
wget and nc are unavailable. In this case, the         
downloaded malware has an MD5 sum of       
91a02956678c4ff6aa9075cfe99db24d. 

The purpose of Hajime is unknown      
and open to speculation. The Hajime binary       
actually attempts to block the ports that Mirai        
uses to communicate with its command and       

control (C&C) servers, displaying the     
following message on infected systems: 
 
Just a white hat, securing some      

systems. 

Important messages will be signed     

like this! 

Hajime Author. 

Contact CLOSED 

Stay sharp! 
 
Like the other botnets found, Hajime's effects       
are only stored in memory, and resetting the        
device will clear it back to the same insecure         
settings Hajime found the device with. 
 
3.2 Mirai 

Mirai is likely the most famous botnet,       
found to be responsible for a record-breaking       
620 Gbps DDoS attack.25 On October 21st,       
2016, Dyn’s DNS infrastructure was hit with       
an attack of a similar Gbps output, drawing        
Mirai into the public spotlight.26 On Twitter,       
Octave Klaba, the founder and owner of OVH,        
reported attacks thought to stem from Mirai,       
reaching over 1Tbps.27 Many researchers     
have done their own study of Mirai whose        
source code was released around October 1st,       
2016, on Hackforums, by a user called       
Anna-Senpa.38 This latter source includes     
everything from the scanner, the loader, even       
an API where customers can be allowed       
access to the C&C server to direct attacks. 

As a result of the source being leaked,        
countless modified strains have been found in       
the wild and continue to be found. 

Mirai first scans the environment it      
has penetrated. It logs on by randomly       
selecting username/logins from a    
predetermined list. Once it is in the system, it         
attempts to determine whether it is in a shell         
or not using shell and, checking access to the         
/bin/busybox MIRAI path to ensure it is       

 



receiving the proper response (MIRAI:     

applet not found). 
If it receives the expected response,      

the Mirai downloader, ECCHI, shows up next.       
It starts out with similar commands to the        
scanner, running shell and sh, and then       
/bin/busybox ECCHI. Next, it checks the      
output of ps so as to discover other running         
processes. The Mirai source carries a list of        
processes to destroy, namely other botnets. If       
any are found, it will run kill -9 against         
them. This is a territorial act, as it wants to          
ensure it is the only botnet in control of the          
device. 

Like Hajime, it checks /proc/mounts     
for mounted filesystems and cycles through      
them to determine access. 

To prep for the impending download,      
Mirai copies /bin/echo, empties it, and then       
chmod’s it to ensure it can execute the file. The          
last step before it can download is to cat         
/bin/echo. The bot ignores everything but      
the ELF header, and simply checks it for the         
architecture information. 
Then, it checks for wget and tftp, and uses         
whichever is available. Mirai downloads the      
architecture specific file. Mirai supports x86,      
MIPS, MPSL, ARM, ARM5, ARM7, PPC, SPC,       
M68K, and SH4 architectures, and the source       
actually includes a cross compiler for this       
reason. Then it downloads it to the prepared        
dvrHelper file and runs it. That done, it runs         
the script and exits out, its mission       
accomplished. 

The malicious binary causes a     
connection between the device and the Mirai       
C&C server. The device will begin the same        
scanning routine seen previously, alerting the      
C&C server of insecure bots so it can be hit by           
a loader and added to the botnet. The        
connection can also be used to broadcast a        
multitude of DDoS attacks to the clients: UDP        
flood, Valve query flooding, 'DNS water      

torture', Synchronization Acknowledgment   
(SYN/ACK) floods, Generic Routing    
Encapsulation (GRE) IP, Ethernet flooding,     
and HTTP flooding. 
 
3.3 Bashlite 

The Bashlite malware, like Qbot and      
its derivatives, has been around since at least        
early 2015 and the source is easy to find.29         
HackForums and LeakedFiles list several, and      
even GitHub has several repos with the       
source. The HackForums user Anna-Senpai     
even references it in the original forum post        
where the Mirai source code was posted:       
“However, I know every skid and their mama,        
it's their wet dream to have something       
besides Qbot.” and then references the speed       
of Mirai versus Qbot: “Bots brute Telnet using        
an advanced SYN scanner that is around 80x        
faster than the one in Qbot, and uses almost         
20x less resources.” 

A quick Google search results in      
numerous YouTube videos and forum posts      
with tutorials on how to set up Qbot. Most         
versions of Qbot lack any kind of honeypot        
detection, and simply log in and try to dump         
their malware. Each client malware is      
cross-compiled for different architectures, as     
we can see at one of the GitHub links.30 NTPD          
is MIPS, bash is x86, tftp is ARMv6, etc.         
Basically, it attempts to download every      
possible file and run every possible one,       
hoping one will be the right architecture to        
infect the client. 

Qbot/bashlite generally contains   
capabilities for HTTP, UDP and TCP flooding       
attacks, but with so many sources available       
the attack vectors can differ from bot to bot. 
 
3.4 Bricker Bot 

Bricker Bot made the headlines May      
4th, 2017, after a RadWare article revealed       
details about the bot.31 It returned to the        

 



spotlight on April 21st, 2017, with a       
BleepingComputer article that claimed to     
have found the author of Bricker Bot.32 

Bricker Bot is a grey-hat bot. It       
attempts to log in to insecure Telnet devices        
and disable them, either temporarily or      
permanently. Bricker Bot uses Tor exit nodes       
to conceal the actual IP of the attacking        
device. 

Its self-proclaimed creator, under the     
nickname janit0r, claims to have bricked      
around 2 million devices. According to      
Radware Bricker Bot would have     
permanently disabled some IoT devices, but      
its actual impact remains unknown. 

On April 2nd, 2017, the honeypot      
server saw several different attack patterns      
matching either Bricker Bot or that of a        
similar botnet. Variations of the Bricker Bot       
attack pattern were seen 21 times, originating       
from 6 different IPs. The bot collected the OS         
information from /proc/version and uname     

-a, checks shadow/passwd, and checked the      
contents of /etc/. Then, after running su root        
to ensure that the user was root, it attempted         
to run a forkbomb by creating a function that         
repeatedly forked itself: 

d(){ d|d & };d 2>/dev/null 

Traffic received in the same     
timeframe and for several days caused the       
honeypot to hang on the passwd command,       
which the bot seemed to follow minutes later        
by trying to kill every running process and        
reboot. 

Another type of traffic encountered,     
more malicious, redirected /dev/urandom to     
random device descriptors, attempting to     
clear the IP route and setting max threads to         
one. 

After fixing the bug that caused the       
honeypot to hang on the 'passwd' command,       
we could see that the bot was attempting to         
change the password to a randomly      

generated string, which was different each      
time it connected. 

The honeypot was modified for the      
passwd command to 'work'; running passwd      
would lock the honeypot out to anyone but        
those using the provided password, and in 48        
hours of uptime, we did not witness any login         
attempt using the generated password. 

On April 4th, 2017, the honeypot went       
down for approximately 6 hours and      
thereafter stopped receiving traffic. It is      
worth noting that we had set up two other         
honeypots - one of them in the same        
DigitalOcean region - that never received any       
traffic from that bot. The only difference       
being that the honeypot attracting Bricker      
Bot traffic was spun up in early March,        
whereas the other two honeypots were not       
started until the end of March. 

The last time the honeypot monitored      
any Bricker Bot-like activity was April 24th,       
2017, with some slight differences compared      
to the previous patterns observed. This time,       
it left a message in the ‘message of the day’          
(motd) file warning that the system had been        
hacked, and then immediately returned to      
forkbomb it. The traffic resulted in 180 logins        
in one day, from two IPs. 
 
Conclusion 

More than twenty years ago, John      
Perry Barlow in his Declaration of the       
Independence of Cyberspace called for a      
civilization “more humane and fair” than that       
of governments. However, and as mentioned      
above, the number of malware attacks keeps       
increasing at an incredible pace. When we       
started our research for this paper, Mirai was        
the most malicious botnet in terms of scope.        
As of this writing WannaCry/WannaCrypt     
seems poised to take its place in the        
headlines. 

 



The source of attempted exploits     
observed spans across the whole globe.      
Featureless servers encounter a consequent     
amount of traffic, but that volume is even        
greater when the server has a purpose, such        
as an IP camera, or a Wordpress website with         
a domain name. 

Interestingly, we discovered that most     
of the attacks rely on old malware, which        
tends to indicate that those attacks are still        
successful and thus that steps to prevent       
them are largely ignored. Indeed, these      
exploits mostly rely on improperly configured      
or outdated software, and generic     
username/password combinations. 

The attack patterns we recorded for      
HTTP, SSH, and SIP relied on generic exploit        
attempts that seemed to scan a range of IP         
addresses for well-known vulnerabilities.    
Telnet, on the other hand, relied on even        
simpler intrusion methods, by bruteforcing     
with default username and password     
combinations. Sometimes, these   
spray-and-pray attacks immediately   
attempted to download antiquated scripts, or      
more contemporary trojans, but none of the       
recorded attempts were covert enough to      
evade detection or overcome simple     
protective measures. 

On the other hand, we came across       
more recent attacks among which several      
variants of the Mirai botnet. Albeit more       
recent, those botnets also rely on weak or        
nonexistent security measures on the part of       
their targets. 

While this paper reaches its     
conclusion, our work is not done and we will         
keep developing our honeypots so as to       
respond more dynamically to malicious     
connection attempts. 

 
 
Acknowledgments 
This work would not have been possible       
without Sebastien Tricaud, the founder of the       
French Honeynet chapter, to whom we are       
especially indebted. He provided us guidance      
and leadership every step of the way,       
allowing us to succeed as a team. 
A co-founder of Holberton School, Julien      
Barbier’s help was invaluable. Not only did he        
introduce us to Sebastien, but he also gave us         
the opportunity, as students, to discover more       
about the field of information security. 
We are grateful to Richard Sim and Philip        
Yoo, both students at Holberton School, for       
proofreading this paper and contributing to      
making it better. 
 
 
 
Annex 
 

 
 

 
  

 



References 
1.  Lillian Ablon, Martin C. Libicki, 

Andrea A. Golay. 2017. Golay Markets 
for Cybercrime Tools and Stolen Data. 
RAND. pp. 21-23. [ONLINE] Available 
at: 
https://www.rand.org/content/dam/
rand/pubs/research_reports/RR600/
RR610/RAND_RR610.pdf. [Accessed 2 
May 2017]. 

2.  Lily Hay Newman. 2017. What We 
Know About Friday’s Massive East 
Coast Internet Outage. Wired. 
[ONLINE] Available at: 
https://www.wired.com/2016/10/in
ternet-outage-ddos-dns-dyn/. 
[Accessed 2 May 2017]. 

3.  Lillian Ablon, Martin C. Libicki, 
Andrea A. Golay. 2017. Golay Markets 
for Cybercrime Tools and Stolen Data. 
RAND. pp. 21-23. [ONLINE] Available 
at: 
https://www.rand.org/content/dam/
rand/pubs/research_reports/RR600/
RR610/RAND_RR610.pdf. [Accessed 2 
May 2017]. 

4.  CIRCL. 2017. BGP Ranking. [ONLINE] 
Available at: 
https://www.circl.lu/projects/bgpran
king. [Accessed 13 May 2017]. 

5.  CIRCL. 2016. Bgpranking-redis-api. 
[ONLINE] Available at: 
https://github.com/CIRCL/bgprankin
g-redis-api. [Accessed 13 May 2017]. 

6.  William W. Martin. 2001. Honey Pots 
and Honey Nets - Security through 
Deception. SANS Institute. [ONLINE] 
Available at: 
https://www.sans.org/reading-room
/whitepapers/attacking/honey-pots-
honey-nets-security-deception-41. 

[Accessed 2 May 2017]. 
7.  IETF. 1999. RFC 2616 - Hypertext 

Transfer Protocol. [ONLINE] Available 
at: 
https://tools.ietf.org/html/rfc2616. 
[Accessed 13 May 2017]. 

8.  Ian Liu-Johnston. 2017. 
nodeJS_honeypot. [ONLINE] Available 
at: 
https://github.com/ianliu-johnston/n
odeJS_honeypot. [Accessed 13 May 
2017]. 

9.  CVE. 2014. CVE-2014-6271. [ONLINE] 
Available at: 
https://cve.mitre.org/cgi-bin/cvenam
e.cgi?name=CVE-2014-6271. 
[Accessed 2 May 2017]. 

10.  CVE. 2017. CVE-2014-6271. [ONLINE] 
Available at: 
https://cve.mitre.org/cgi-bin/cvenam
e.cgi?name=CVE-2017-5638. 
[Accessed 2 May 2017]. 

11.  Exploit Database. 2017. Apache Struts 
2.3.5 < 2.3.31 / 2.5 < 2.5.10 - Remote 
Code Execution. [ONLINE] Available 
at: 
https://www.exploit-db.com/exploits
/41570/. [Accessed 13 May 2017]. 

12.  Terrence DeJesus. 2017. Apache 
Struts 2 Exploit Analysis. NTT Security. 
[ONLINE] Available at: 
https://www.solutionary.com/resour
ce-center/blog/2017/03/apache-stru
ts-2-exploit-analysis/. [Accessed 18 
May 2017]. 

13.  CXSecurity.com. 2017. Apache Struts 
Jakarta Multipart Parser OGNL 
Injection - CXSecurity.com. [ONLINE] 
Available at: 
https://cxsecurity.com/issue/WLB-2
017030143. [Accessed 18 May 2017]. 

14.  Pooler. 2017. cpuminer: CPU miner for 
Litecoin and Bitcoin. [ONLINE] 

 

https://www.solutionary.com/resource-center/blog/2017/03/apache-struts-2-exploit-analysis/
https://www.solutionary.com/resource-center/blog/2017/03/apache-struts-2-exploit-analysis/
https://www.solutionary.com/resource-center/blog/2017/03/apache-struts-2-exploit-analysis/
https://www.solutionary.com/resource-center/blog/2017/03/apache-struts-2-exploit-analysis/
https://cxsecurity.com/issue/WLB-2017030143
https://cxsecurity.com/issue/WLB-2017030143
https://cxsecurity.com/issue/WLB-2017030143


Available at: 
https://github.com/pooler/cpuminer. 
[Accessed 18 May 2017]. 

15.  IETF. 1983. RFC 854 - Telnet Protocol 
Specification. [ONLINE] Available at: 
https://tools.ietf.org/html/rfc854. 
[Accessed 13 May 2017]. 

16.  Tim Britton and Holden Grissett. 
2017. telnet-honeypot. [ONLINE] 
Available at: 
https://github.com/h-m-s/telnet-hon
eypot. [Accessed 13 May 2017]. 

17.  Pierre Kim. 2017. Multiple 
vulnerabilities found in Wireless IP 
Camera (P2P) WIFICAM cameras and 
vulnerabilities in custom http server. 
[ONLINE] Available at: 
https://pierrekim.github.io/blog/201
7-03-08-camera-goahead-0day.html. 
[Accessed 2 May 2017]. 

18.  John Costello , Allison Nixon , Brian 
Hein , Ronnie Tokazowski , Zach 
Wikholm . 2016. New Mirai Variant 
Leaves 5 Million Devices Worldwide 
Vulnerable — High Concentration in 
Germany, UK and Brazil. Flashpoint. 
[ONLINE] Available at: 
https://www.flashpoint-intel.com/bl
og/cybercrime/new-mirai-variant-inv
olved-latest-deutsche-telekom-outage
/. [Accessed 2 May 2017]. 

19.  Roland Dobbins. 2016. Mirai IoT 
Botnet Description and DDoS Attack 
Mitigation. ARBOR Networks. 
[ONLINE] Available at: 
https://www.arbornetworks.com/blo
g/asert/mirai-iot-botnet-description-
ddos-attack-mitigation/. [Accessed 2 
May 2017]. 

20.  IETF. 2002. RFC 3261 - Session 
Initiation Protocol. [ONLINE] 
Available at: 
https://tools.ietf.org/html/rfc3261. 

[Accessed 13 May 2017]. 
21.  Cisco. 2014. SIPVicious SIP Auditing 

Tool Activity. [ONLINE] Available at: 
https://tools.cisco.com/security/cent
er/viewAlert.x?alertId=33141. 
[Accessed 2 May 2017]. 

22.  Kali Linux. 2014. SIPVicious Package 
Description. [ONLINE] Available at: 
http://tools.kali.org/sniffingspoofing
/sipvicious. [Accessed 2 May 2017]. 

23.  IETF. 2006. RFC 4253 - The Secure 
Shell (SSH) Transport Layer Protocol. 
[ONLINE] Available at: 
https://tools.ietf.org/html/rfc4253. 
[Accessed 13 May 2017]. 

24.  Sam Edwards, Ioannis Profetis. 2016. 
Hajime: Analysis of a decentralized 
internet worm for IoT devices. 
[ONLINE] Available at: 
https://security.rapiditynetworks.co
m/publications/2016-10-16/hajime.p
df. [Accessed 13 May 2017]. 

25.  KrebsOnSecurity. 2016. 
KrebsOnSecurity Hit With Record 
DDoS. [ONLINE] Available at: 
https://krebsonsecurity.com/2016/0
9/krebsonsecurity-hit-witth-record-d
dos/. [Accessed 13 May 2017]. 

26.  Dyn. 2016. Dyn Statement on 
10/21/2016 DDoS Attack. [ONLINE] 
Available at: 
https://dyn.com/blog/dyn-statement
-on-10212016-ddos-attack/. 
[Accessed 13 May 2017]. 

27.  Octave Klaba. 2016. we got 2 huge 
multi DDoS: 1156Gbps then 901Gbps. 
[ONLINE] Available at: 
https://twitter.com/olesovhcom/stat
us/778019962036314112. [Accessed 
13 May 2017]. 

28.  KrebsOnSecurity. 2017. Who is 
Anna-Senpai, the Mirai Worm Author?. 
[ONLINE] Available at: 

 

https://github.com/pooler/cpuminer
https://github.com/pooler/cpuminer


https://krebsonsecurity.com/2017/0
1/who-is-anna-senpai-the-mirai-wor
m-author/. [Accessed 13 May 2017]. 
 

29.  India Ashok. 2016. One million IoT 
devices infected by Bashlite 
malware-driven DDoS botnet. 
International Business Times. 
[ONLINE] Available at: 
https://www.ibtimes.co.uk/one-milli
on-iot-devices-infected-by-bashlite-m
alware-driven-ddos-botnet-1578870. 
[Accessed 13 May 2017]. 

30.  geniosa. 2016. qbot. [ONLINE] 
Available at: 
https://github.com/geniosa/qbot/blo
b/master/cc7.py.txt. [Accessed 13 
May 2017]. 

31.  Radware. 2017. ”BrickerBot” Results 
In PDoS Attack. [ONLINE] Available at: 
https://github.com/geniosa/qbot/blo
b/master/cc7.py.txt. [Accessed 13 
May 2017]. 

32.  Catalin Cimpanu. 2017. BrickerBot 
Author Claims He Bricked Two Million 
Devices. BleepingComputer. [ONLINE] 
Available at: 
https://www.bleepingcomputer.com/
news/security/brickerbot-author-clai
ms-he-bricked-two-million-devices/. 
[Accessed 13 May 2017]. 

 


